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DETRACT 

Analytical solution of the approximation problem of network syn- 
thesis entails a large amount of computational work. This report describes 
an experimental method of solution by means of a computer based on the 
electrostatic analogy in which voltages in a conducting sheet,, set up by 
line currents, represent network immittance functions., The resulting approxi- 
mating function is described in terms of its pole and zero locations and a 
multiplicative constant. The method of operation of the analog computer is 
simple. The poles and zeros are moved around in the conducting medium until 
the desired .immittance is obtained. The continuous scan feature of the com- 
puter makes possible visualization of the resDonse and, what is more important, 
immediately shows the effect of moving any of the poles or zero3. A conver- 
gence procedure for the perturbation of these critical points has been de- 
veloped so that an approximation within the required accuracy is often possible 
within a very short period of time. 

Approximation from the viewpoint of economization is carried out 
with the objective of reducing the number of critical points of a known 
approximating function in order to reduce the number of required- elements in 
the network. The process entails the removal of a pole or zero and redistri- 
bution of the remaining critical points to return, as closely as possible, to 
the required response. The removal of one., or a pair, of critical points, 
perturbation of the remaining ones, and adjustment of the multiplicative con- 
stant is then repeated. The process is stopped just before the number of poles 
and zeros has been so greatly reduced as to make the approximation within 
allowed deviation unobtainable.. 

Positive real functions are guaranteed to give physically realizable 
driving-point- immittances. To insure FRF results, the analog approximation is 
made to the real part of the driving-point immittance. The computer is well- 
suited for approximations to the real or imaginary parts, as well as the ampli- 
tude function. 

Approximations were carried out to the transcendental function aris- 
ing from the input admittance of a shorted transmission line. The synthesized 
networks were found to give smaller deviations than known partial fractions 
expansions. Furthermore, the analog gave networks with fewer elements. 



**> 

»"32?-53* PIB-26.3 

TABLE OF CONTENTS 

Page 

Acknowledgment 

Abstract 

I.     I ntr odvic t Ion 1 

Ho    The Electrostatic Analogy 1 

III.   The Logarithmic Transformation 3 

IVo    Symmetry Conditions U 

A   Symmetry About the Real Axis h 

Bo  Symmetry About the Imaginary Axis f> 

V. Description of the Analog Computer 6 

VI. Errors in the Computer 7 

VII. Method of Operation 10 

VIII. Calibration Procedure 10 

IX..    The Approximation from the Viewpoint of Economization 11 

X. The Perturbation Technique 11 

XI. Synthesis of Driving-Point Functions 13 

XII. The Experimental. Results lf> 

A„  Approximation for the Range t^5.3.0 16 

B.  Approximation for the Range Ti 6.0 19 

XIII. Conclusion 20 

Bibliography 



n 

{I 

L 

R-327-53, PIB-263 

I.  Introduction 

Although t.he theory of synthesis of passive, linear, lumped-parameter 
networks is well-known, there is, as yet, no completely satisfactory solution 
to the approximation problem. Usually, a synthesis can be carried out after 
the immittance* function can be described by means of an algebraic expression 
of a specified form. Often., the graphical representation of the function is 
given and the problem then becomes one of finding the equation of the curve, in 
the required form, which will approximate the desired function to a required 
degree of accuracy. Analytical methods of solution exist, but the amount of 
computational work is generally very large. 

This raport describes an analog computer which provides an experimen- 
tal means of solving the approximation problem. The procedure is essentially 
Te of trial-and-errorf but converges very rapidly. The solution is found 
directly in terms of the location*, of the poles and zeros of the function re- 
presenting the required response. 

The methods used here to solve the approximation problem are made 
possible because of an analogy which exists between electrostatics and the 
type of rational analytical functions which arise in one network theory (Refer- 
ences 1, Us and 8). Thus5 the highly developed mechanism of potential theory 
becomes available for the solution of circuit problems. The common and easily 
developed "feeling* for electrostatic problems may be applied to give useful 
qualitative results in network synthesis. 

II. The Electrostatic Analogy 
t ...... 

Any immittance function can be described in terms of its poles and 
zeros and a multiplicative constant, 

H(p - pJ (p - P.) o.. 
F(P) - _ f~— 2 _ (1) 

(P ~ Px) (P - P3) ••• 

where. 

If p - *T + •)(* is the complex frequency variaoie 
I ft jf H is the multiplicative constant 

P2> pi „   ,...  , p2n are the zerios of F(p) 

p,, p3<,   ...  j, P^.i are the P°lss of F(p) 

The logarithm of the absolute value of the immittance is 

* In this report,, the general term "immittance function" includes impedance or 
admittance,  of both driving-point or transfer type. 

t 

I 

I 
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in |F(p> | -  In H + <J. In |p p?n | • • ZIn |P-p^j I (2) 

and is called the gain function of the network„    Note that the gain function, 
at any point p;.   is equal  to the sum of the logarithm of the distances from p 
to the zeros,  minus the sum of the logarithm of the distances to the poles, 
plus a constant,, 

Now,   let  us examine  the voltages in a uniform,  infinite, conducting 
sheet pierced by line current sources. 

Consider,  a finite  region of the infinite conducting plane of thick- 
ness ot as shown in Fig„ MRI-13293» 0 is the origin, where the current I is 
introduced into the plane,.     Q is any point whose distance from the origin is q, 
and K is a reference point located at distance k from 0„ 

Since  the ^ondu:ting sheet is  infinite,   the current emanates radially 
from the source at 0.,    But, 

1    -    JA (3) 

The assumption is made that there is no current flow in the S direction. Also, 

R * {-^ ••-  -      --  M 

hence, 

V - IR - J*l (5) 

where, J * current density 

P  » resistivity of paper 

1 » length of conducting path 

A * area presented to the current 

Then, at any radial distance r, the change in voltage dV for a 
differential change in radius dr is 

dV - H^- (6) 
2« I r 

Integrating from K to Q results in 

V        *    !L.   In    * 
KQ 2nS q 

(7) 
- C - x22, In q 

%«£ 
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where RQ is the resistance per square of the paper and C is a constant. 

It is seen, then* that for a constant current source, the voltage 
at any point is proportional to the logarithm of the distance to "the current 
sourceo 

If now, the conducting sheet represents the p~plane, and if posi- 
tive currents are introduced at points corresponding to the poles and negative 
currents are introduced at points corresponding to the zeros, all currents 
being of the same magnitude* the resultant voltage becomes, by superposition, 

IR ,    o 

2n ilnI^P2n' - i-^P-P&i-ll (8) 

Eq.   (8)   is identical in form with Eq.  (2)  for the gain function of 
a network.    The  constant multiplier, IR0/2n,  determines the scale factor. 
The constant A determines the zero level Of the voltage, i.e., the impedance 
level  of the gain function. 

III. The Logarithmic Transformation 

Double-layer*  circular, electrolytic tanks representing the p-plane 
have been used (References 2 and 3) as a tool in network analysis.    The use 
of carbon impregnated paper as a conducting medium is facilitated by the 
logarithmic transformation (Reference 6) 

W   •=    In p 

-    ln|p| + ,1* 

*    U • j V 

where, p «   |p|e^    - cr +  *& (9) 

The Riemann surfaces of the p-plane are all represented by the in- 
finite W»plane sheet.    The single Riemann surface 

0 « * < 2n 

made by taking the branch cut in the p-plane along the positive real axis, 
corresponds to a semi•infinite W~plane strip of width 2n.    The transformation 
is shown in Fig.  MRI--1329U. 
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The advantages of the logarithmic transformation led to the con- 
struction of the physical analog in the logarithmic plane. These advantages 
ares 

1. The logarithmic coordinates are convenient for many problems. 

2. A sizeable range of frequencies can be represented in a convenient 
size sheet. 

3-  Calibration is simple using known, constant-slope response curves. 

U.  The accuracy is uniform over the useful region of the plane. 

5.  Errors due to the finite size of the plane are easily made negligi- 
ble. 

The main advantages of using the conducting paper, rather than an 
electrolyte, are? 

1. The paper is net affected by shock, whereas disturbances of the 
electrolyte cause ripples and consequent distortion of the field. 

2. Use of direct current is possible since there is no dissociation 
problem. 

3-  Paper is more conveniently handled than a fluid 

IV. Symmetry Conditions 

A.  Symmetry about the Real Axis 

Since network immittances are analytic functions expressable as 
ratios of polynomials in p with real coefficients, poles and zeros appear 
either as complex conjugate pairs or on the real axis. This means that the 
W»plane will have current sources and sinks placed symmetrically about the 
n(real) axis. Thus, nc current will flow across the n-axis and the plane may 
be cut along this line without disturbing the field, or voltage distribution. 
Only one half of the transformed plane is then used and It contains all the 
necessary information. Poles and zeros on the real axis are reduced to half 
their normal value since only half the current would normally flow into the 
half-plane used in the analog. 

This symmetry condition is shown in Fig. MRI••13295-A. 

i 

I 



#jjLfrgfr — n 
R-32 7-53, PTB-263 I 

—  SyTmnetry About the Imaginary Axis 

Normally, the poles and zeros of an immittance are not symmetrically 
placed about the imaginary axis. If the symmetrical critical points are in- 
troduced into the analogy the voltage produced along the n/2 (imaginary) axis, 
that is, the gain, is simply doubled (Reference $).    This result can be proven 
mathematically in the following fashion (Reference k)* Let the original im- 
mittance (normalized) be 

F(p) 
n(P-P2m-l> 

(10) 

i 

I 

I r 

as in Eq. (1). The logarithm of the magnitude of the immittance is then the 
voltage measured along the imaginary axis or, 

Z In >-P2n 
(11) 

With the addition of the image critical points, F(p) is changed to 

Fx(p) - 
«(P-P2n) (P-Pfr) 

,l(p-p2m=l) (P-pLl} 
(12) 

I 

1 
$ 

Now the logarithm of the magnitude of this function along the imaginary axis is 
the measured voltage 

2 
*MP2n -2 In 

2^1n 
>°P2n 

(13) 

The result shows that the magnitude measurement is simply doubled. 

The imposed symmetry about the imaginary axis makes it possible to 
cut the analog plane in half again, as did the symmetry about the real axis. 
This time critical points on the imaginary axis are reduced to half-currents 
and only one quarter of the original p-plane is represented in the analog. 
This symmetry condition is shown in Fig. MRI=1329.$-=>B. Furthermore, the 
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imaginary axis now represents a stream line (i.e., no current flows across 
it). Since all current flow lines approach the Imaginary axis assymptotically,       .. 
and since current and voltage are conjugate functions in the analog, then the        E 
constant voltage lines are all perpendicular to the imaginary axis, which • 
means that the voltage measuring probe does not have to be so accurately posi- 
tioned. 

V.  Description of the Analog Computer 

The computer is mounted on a standard size machinist's table having 
three shelves which, with the addition of an oscilloscope, makes a complete, 
easily portable unit. A drawing board mounted on the top shelf acts as the 
support for the conducting-paper plane. The remaining components are placed 
on the other two shelves. 

Currents are introduced into the conducting plane by means of cur- 
rent probes. These probes are simply steel needles pressed into brass sleeves. 
The sleeves facilitate the attachment of leads. The current probes are fed 
from d-c sources which are constant voltage supplies of either plus or minus 
1$0 volts. 150 kilohms is inserted in series with each probe for full currents 
and 300 kilohms for half-currents. Thus, the full currents are of the order of 
one milliampere. This was chosen as a convenient value since it leads to con- 
venient values of scanning voltage. In calibrating (see p. 10), the voltage 
gradient along the real frequency axis is approximately 0.6 volts per decade 
of frequency and is readily handled by the display system. Lower current 
sources would require further voltage amplification while higher currents tend 
to heat, and possibly burn, the conducting paper. Series potentiometers of 
20 kilohms are used to adjust all currents to the required values. These are 
necessary since the impedance seen by a current probe depends on its position 
in the conducting sheet as well as on the total number of probes in the sheet. 
In order to preserve the drawing board, a replaceable cork sheet is placed 
beneath the conducting paper. The current probes are held in place by pressing 
into the cork sheet. 

f 
t The voltage along the real frequency axis is scanned by a rolling 

I 

voltage probe. The voltage probe comprises a ball bearing with a copper sleeve 
pressed on to the outside of the race. The sleeve is circular in cross-section 
and hence, point-contact is made with the paper. The voltage probe carriage 
is supported on a length of rectangular waveguide and is driven across the 
sheet by means of a motor and belt drive. Reversing micro-switches are mounted 
at each end of the guide. The driving motor is a commutator a-c type with a 
forced air cooling system. Since the total scanning time of the paper is short, 
a cyclic duty motor, instantly reversible every five seconds, is required. A 
high torque to inertia ratio and a cooling fan prevent overheating. 

The voltage at the pick-up (scanning) probe is displayed on a Dumont 
3OI4H cathode ray oscilloscope. The scope's d-c amplifiers have sufficient gain 

L  
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for the voltages encountered 30 that no pre-amplifiers are necessary. Horizon- 
tal deflection for the display system is obtained from a Helipot precision 
linear potentiometer driven from the voltage probe carriage by a continuous 
belt drive. A tension adjusting coil spring is inserted in the belt to mini- 
mize backlash. Drag on the probe carriage ha3 been reduced to a minimum es- 
tablished by the friction of the pulleys and potentiometer bearings. Since the 
output from the analog plots a logarithmic gain function gainst the logarithm 
of frequency,, the face of the cathode ray tube has been calibrated in log-log 
coordinates. This was done by spraying the tube face with an acrylic coating. 
A log-log grid was then inscribed with a needle-point on the surface thus 
formedo The scratch marks were filled with marking crayon to make permanent 
coordinates directly on the face oi the tube. A long-persistance tube is used 
in order to retain the t,rac6 for as long a time as possible. This makes the 
effect of movement of critical points readily observable. The computer is thus 
a continuous scan mechanism. A picture of the analog computer (without the 
display oscilloscope) is shown in Fig. MRI-13296. 

VI. Errors inthe Computer 

The percentage error depends, somewhat, on the particular problom 
involved. There are certain errors, however, which are inherent to the device. 
These are analyzed below. The principle sources of error ares 

L  Nonuniforraity of the conducting paper 

2,  Paper shift 

3   Finite 3ize of the plane 

U.  The probes 

5.  The oscilloscope 

a.  nonlinearity of the amplifiers 

bo  parallax 

c.  pickup 

1„  Nonuniformity of the Conducting Paper 

Changes in the resistivity of the paper may be caused by a change 
in the spacing of the rollers while the paper is being made or by impurities 
and inhomogeneities in the material. Errors due to a change in roller spacing 
are completely negligible since the long dimension of the conducting sheet 
used in the analog is taken from the width of the roll and, usually, only 3.1il 
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inches of length along the roll are needed. The latter cause of nonuniforraity 
was Investigated by measuring the resistance per square of the conducting 
sheet., A pair of coaxial circular conductors were placed in contact with the 
conducting medium. The resistance between these conductors is directly pro- 
portional to the resistance per square of the conducting sheet, the propor- 
tionality constant being determined by the geometry. The area between the con- 
ductors is approximately 1.3 square inches. Hence, this method is a measure of 
the average resistivity over a comparatively small area, Tests were carried 
out on a 5 foot sheet cut from the roll, which is about 31 inches wide. About 
200 readings were taken, or one reading every three inches. The results showed 
that the paper has a resistance of 1800 ohms per square with variations of less 
than 0.U percent. 

Shift 

Paper shift was an extremely troublesome problem. In order to assure 
good contact of the rolling voltage probe, it is necessary to spring load the 
contacting wheel. Unless the conducting paper is securely held, the voltage 
probe will shift the paper as it moves across the plane. The spot on the 
cathode ray tube then does not retrace the same curve when the voltage probe 
scans in the opposite direction. Paper shift has been eliminated with the use 
of spring-fingers, at both ends of the conducting sheet, arranged so as to 
flatten the sheet and put it into tension. 

I 

Finite Size of the Plane 

I 

In the logarithmic plane no errors are introduced by the finite 
width of the paper, providing that the ratio of width to length is such that 
the conformality of the transformation io preserved. The conducting sheet « 
was chosen 20 inches long as a convenient size. Four decades of frequency are * 
used, making each decade five inches long. The corresponding width must re- 
present a change of 2n radians. Hence, for the width x, 

•.--'•£,--£. (iu) 
2w   lnlO 

Therefore, x is 13.65 inches. But the analog represents only a quarter of the 
p^plane. In practice, then, the conducting sheet is 3»bl inches wide. 

The transformation requires the use of a semi-infinite sheet. There i 
is an error introduced in using a finite length to represent the logarithmic 
plane. Consider the field far removed from a finite region where all the poles 
and zeros are located. The return for any excess current introduced into the 
plane is taken at infinity. Then the equipotentials far from the furthest es- 
sential point are constant, amplitude lines or lines perpendicular to the length 
of the conducting sheet. Equipotentials are painted across the sheet with 
silver paint to represent, at the two ends of the paper respectively, the origin | 
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and the point at infinity. Analysis shows (Reference u) that if the equi- 
potential representing the point at infinity is placed at seven times the 
distance to the furthest singular point, the errors due to the finite also 
of the plane will never be greater than one percent. In the computer, this 
ratio has been increased to ten as an added precaution. The same situation 
occurs at the other end of the strip., and it is likewise satisfied by leaving 
an unused decade ab the zero end. The sheet is four decades long. Thus, the 
two center decades are available for pole and zero location, or the frequency 
range is 100 to one. 

L.  The Probes 

1 

Because the current probes are finite in size they distort the field 
by disrupting the homogeneity of the conducting medium. Holes left in the 
paper after the removal, of the needle probes have the same effect. The dis- 
tortion of the field, however, is negligible at distance greater than ten times 
the radius of the probe (Reference U). Since the probe radius is .0125> inches, 
distortion due to probes is not noticeable at distances of more than one-eighth 
inch, A similar condition holds for the voltage probe since the rolling wheel 
does not make actual point contact but has approximately a circular contact area 
of small radius. A farther error is introduced if the voltage probe does not 

4 accurately follow the line of the real frequency axis. This error has been 
minimised in the computer by making the constant voltage lines perpendicular 
to the scanning axis (p. 6). 

5.  The Oscilloscope 
£ . -- • - 

Konlinearity of the amplifiers can be kept to a minimum of 3 percent 
by proper adjustment of the scope and use of fresh tubes. The csnter three 
inches of the five inch tube used is almost perfectly linear; hence, non- 
linearity is not an important error in the center of the tube. 

; I Parallax error was minimized by inscribing the log-log coordinates 
directly on the face of the cathode ray tube (p. 7). The separation of the 
spot and grid is then only the thickness of the glass face of the tube. 

H Pickup produces error since it tends to give thickness to the spot, 
making fine focusing, and hence exact location of the point, impossible. 

St 

In most cases, the largest errors are introduced by the display 
system, i.e., the oscilloscope. Because of diffusion, nonlinearity and parallax, 
the spot cannot be located closer than within one-sixteenth of an inch. This 
introduces an error on the log-log grid of no more than five percent. The 
maximum overall error is then approximately six percent. 

I If the function in question has a critical point (zero or pole) 
W within an eighth of an inch of the real frequency axis, the display is not 

valid immediately within the vicinity of the current probe. This can be 
I 
ft 

—",; '• ,.      ^"~* «*§i 
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readily remedied, however, by calculating a point or two on the curve in 
question. 

1 

« 

VII. Method of Operation 

The method of operation of the computer is comparatively simple. 
The desired form of the gain function is drawn directly on the face of the' 
scope with China marking crayon. The poles and zeros are then moved around 
in the conducting sheet until the picture on the cathode ray tube agrees with 
the desired one within +\o  specified tolerance. m 

i I In this manner, the approximation problem of network synthesis can 
be solved in comparatively a very short time. In many cases, the correspond- 
ing analytical procedure would require several days. Furthermore, problems 
requiring a large number of essential points are handled with almost the same 
facility as the simple problems. This is not at all true of the analytical 

j • approach. 

| VIII. Calibration Procedure 

Calibration of the log-amplitude scale presents no difficulty. Es~ 
i\ sentially the procedure involves setting up a known amplitude function in the 
\\ analog and setting the gain controls to see the proper response on the cathode 

ray tube. The simplest response is that due to one pole (or one zero). If 
the pole is located at the origin, the response is a constant slope line. 
That is, 

P(») - - (15) 
CO 

From which, 

slope - ^tW     - .! (16) 
d(log GO) 

The procedure, then, is to set the horizontal positioning and gain controls so 
that the position of the voltage probe corresponds to the frequency scale, 
then scanning the output voltage from a simple pole at the origin snd setting the 
vertical gain control so as to see a unit slope line. For convenience, this 
slope has been permanently inscribed on the face of the cathode ray tube. It 
should be noted that a simple pole at the origin corresponds to a current source 
of one^fourth normal value if only one quadrant of the p-plane is represented 
by the analog. Ifl/2the p~plane is used, the calibrating singularity will have 
half the normal value of current. 

I 
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* 

1 

No mention has, as yet, been made of setting the vertical control. 
It will be recalled that one of the variables of the approximations is the 
determination of the multiplicative constant of the immittance (Bq. (1)). 
When the logarithm of the amplitude is taken, this becomes an additive con- 
stant (Eq. (2)). But the addition to a constant of a curve means simply 
raising or lowering the position of the curve. Thus, the vertical position 
control is a multiplicative adjustment in the approximation procedure. 

IX. The Approximation from the Viewpoint of Economlzation 

If the approximation has its start in an arbitrary choice of the * 
number of poles and zeros and a random location of these critical points, the * 
problem becomes a question of relocation of these points to obtain the best 
approximation and the convergence technique is not readily apparent. In fact, 
the solution of this problem involves so much ingenuity twat it may at times 
seem to be more cf an art than a science. For this reason, the approxima- 
tions carried out in this paper start with a known approximating function. An 
economiaation process is used to reduce the number of poles and zeros as much 
as possible, thus minimizing the number of elements and obtaining the best ap- 
proximation for this situation. The method uses several of the critical points 
of the known approximating function as a starting point. Enough poles and 
zeros are chosen to give a good approximation in the range of interest. Then, 
the pole or zero having the least effect on the response is removed and the re- 
maining critical points are perturbed until the response is returned, as 
closely as possible,-, to that which existed before the removal of the singularity. 
The process of removal of one, or a pair, of critical points and perturbation 
of the remaining ones is then repeated. Usually, the amount of rearrangement 
necessary after the removal of a pole or zero is not too great until a minimum 
number of critical points i3 reached. Further economization makes approximation 
within specifications impossible. At this point, the optimum synthesis is 
reached. Analytic economization, sometimes called "quantization", has also been 
used (References 5 and 12) to approximate continuous pole and zero distributions 
with a finite number of critical points. 

X.  The Perturbation Technique 

Although it is not always possible to predict the movement of criti- 
cal points in order to converge to the required approximation, a limited per- 
turbation technique has been evolved. An analytic approximation technique, 
by successive adjustments specified in terms of shifts of pole and zero posi- 
tions made to reduce deviation from desired characteristics, has been success- 
fully carried out elsewhere (Reference 7). However, the methods are much more 
laborious than those described here and a check on optimum synthesis cannot 
readily be made. 

f 

I 
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The first question in the econondzation concerns itself with the 
order in which the poles and zeros are removed. In general, the critical 
points are eliminated as follows: 

1. Points outside the region of interest. 

2. Points lying at the far ends of the region of interest. 

3. Points furthest from the real frequency axis. 

U.  Current sources of one polarity lying between sources of opposite 
polarity. 

$.      Other points, if possible. f 
Step U is perhaps most in need of explanation. It sometimes occurs 

that three critical points, say a zero between two poles, lie along a line 
I, approximately parallel to the scanning axis (constant phase line). It is then 
I possible to economise by removing the center critical point. The success of 
• the economization depends somewhat on the original positions of the critical 

points and on the total numbers of poles and zeros in the finite region of the 
^ plane. Another point of interest is the method of perturbation which leads to 

a most rapid convergence. An empirical technique, applicable in many situa- | 
tions, has been evolved. It should be said here that control of the multiplica-       f 

j? 1: tive constant plays an important role in the convergence procedure. ?ertical 
I positioning is adjusted following every other step, that is, after each removal 

of a pole or zero; again after each perturbation of each remaining critical 
point. 

The critical points may be classified according to their location in 
the logarithmic plane as: 

1. Poles or zeros close to the real frequency axis. These points lie 
close to maxima or minima of the required curve or where the curve has a steep 
slope. The position of these points is most critical, therefore they are the 
first to be adjusted. Moving a pole closer to the scanning axis (along a con- 
stant amplitude line) increases the peak. Moving the pole parallel to the scan- 
ning axis (along a constant phase line) keeps the amplitude of ths peak essen- 
tially constant but changes the frequency at which the peak occurs. The effect 
of small movement along a constant amplitude line is not as readily observable 
far from the critical frequency as is small movement along a constant phase 
line. 

2. Poles or zeros far from the real frequency axis. The points close 
to the axis located n/2 radians from the scanning line, have little effect 
on the peaks and troughs of the response curve. They do have an effect over 
the region of frequencies nearest to their location. Their movement generally 

I 

J 



jtfS*** 

R-32 7-53, PTB~263 13 

raises or lowers that part of the curve where the slope is not very steep and 
does not change rapidly. 

3.  The effect of movement of critical points centrally located in the 
logarithmic plane is most difficult to predict and is most dependent on the 
particular distribution in question. 

Two general statements can be now made. Unless there is great con- 
centration or bunching of poles and zeros, then for each critical point there 
is a finite range of frequencies where the curve is critically affected by a 
small movement of the point. The movement is small enough so that it does not 
greatly affect the response outside this finite range. Furthermore, the value 
of the response can be kept constant at any frequency even if all poles and 
zeros are moved, provided that the distances to these critical points from the 
frequency in question is kept constant. 

Keeping these facts in mind, it becomes a matter of experience to 
obtain the skill needed for making the perturbations so as to obtain rapid 
convergence. 

XI. Synthesis of Driving-Point Functions 

A necessary and sufficient condition for the physical realiaability 
of a driving-point immittance is that it be a positive real function. This 
condition is guaranteed if the approximation is carried out in the real part 
plane (to be described below), providing certain restrictions on the positions 
of the critical points are satisfied. 

"1 

The input immittance may be written as 

i 

F(p)    - 
a   • a-p +  ... + a^p 

b   + b, p •••  ... • bjpJ 

Along jw this becomes 

F(«)    - 
ra,  + jccn- 

(17) 

mg • jtaig 

where m and n are polynomials even in &>. Then, 

2 
nunu + eo n.n^ 

(18) 

He F(o>) - —^ Yl  (19> 

•• '• 

----: :Z    *T ' J -..- " • '  ; 
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is an even function of co. Substituting X for co gives 

2 2i 

ReF(X) - -2 f-K 2L_ (20) 
Bo * B2X * •'• * B2jX 

Consider X to be a complex variable 

X    -   co • y (21) 

and express Re F(X) in terms of its critical points 

n(X2 - X*) 
Re F(X) - H n i- (22) 

n(X2 - Xp 

where X and X are the zeros and poles, respectively. Factoring 

n(X - X_)(X+ X.) 
| Re F(X) - H  2 2_ (23) 
I «(X - Xp)(X • ^ 

But the coefficients of Eq. (20) are real so that the poles and zeros of the 
function are complex conjugate or real. Then terms containing the conjugate 
critical points of Eq. (23) must appear whenever these points are complex, or 

(X- X )(X -X*)(X + X )(X* X*) 
Re F(X) - H  2 ^ 2 ° (2U) 

U-XpKx- xjKx* yu + xp*) 

i 

m 

m. 

It 

Thus, it is seen that the poles and zeros are symmetrically positioned with 
respect to the real and imaginary axis in the X-plane. In order that the real 
part be associated with a physical immittance function, there are two re- 
strictions made on the locations of the poles and zeros. 

1. There may be no poles anywhere on the real X axis over the whole 
frequency spectrum. 

2. Zeros on the real axis must be of even multiplicity. Critical points 
may appear anywhere else provided that the symmetry conditions are satisfied. 

Symmetry with respect to both the real and the imaginary axis enables 
the analog to represent the whole function with any quadrant of the X-plane, as 

-S 'I 
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explained in Chapter IV. To assure physical realizability, the approximation 
is made to the real part of the required function. The necessary restrictions 
on the locations of the poles and zeros are very easily met in the analog. No 
pole-currents are introduced on the scanning axis and zero-currents on ca are 
even multiples of unit current. In order that no pole appear at infinity, no 
pole-currents may be introduced at the infinity return equipotential. This 
means that the number of zeros in the infinite region must be at least equal to 
the number of poles. 

Simple analytic methods for determining F(p) as a minimum reactance 
function are known (Reference 9) once the equation of Re F(X) has been found. 

III. The Experimental Results 

The input admittance of a short circuited transmission line was syn- 
thesized over a specified frequency range with a lumped-parameter network by 
approximating to the input conductance. 

The input admittance of a short circuited transmission line is given 
by 

T(») mfJL+JEL. Coth/ J(R - jttL) (G - jaC) (2$) 
V R • jcoL 

where R, G, C, and L are the resistance, conductance, capacitance, and induc- 
tance per unit length. By neglecting the conductance, introducing 

Z  - y/ L/C  lossless characteristic impedance c 

f   - Rl/Z   attenuation parameter 

y   - 2nf>/\   - cojE/v  electrical argument 

v -l// LC  velocity of prqpagation 

normalizing with respect to Z and substituting s for jT, Eq. (25) is con- 
verted into 

T(.) -  Coth s £jggg (26) 

/(!•{/•) 
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The Mittag-Leffler's partial fractions expansion of Y(s) is (Reference 11) 

I(s) - -!— • J*   -5 — (27) 
f  • s    n-1   s • y s + n n 

A.      Approximation for the Range T.S. 3*0 

The approximation in this range was achieved by means of an econo- 
mization process starting with the first two terms of the partial fractions 
expansion.    The starting approximating function is 

I.(,)    -   _L-   •    -_ *• ? (28) 
>*8 S+/S  + JI 

for real frequencies this becomes, 

r,(T) - 1-0B5 <9.87 -y « j 1.3W (g9) 
1     U.U.- Mf* 3^10.07-r2)    forf" M 

where the multiplicative constant 1.085 was chosen in the analog so as to make 
Ol(*T) an equal ripple approximation to Re T(s) forf* 3.0. 

*\M   - (J.Cr) - 1-085 (1.31^ -g8.5r
2 + U3-5) ?  (30) 

(li.ia-.89UT2) +T?2 (10.07-r2) 

Substituting X for T and letting X take complex values, the critical points of 
G, (X) located in the first quadrant are: 

zeros:    Xg - 2.39 I 2$° 

poles:   x^   - .UU7 I 90° (31) 

X3 - 3.1U I U.08° 
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r 

I 
i 

These, then, were the original approximating critical points. The 
resultant analog function is to approximate Re T(s) for^S. 3.0 in an equal 
ripple manner. The curve to which the approximation was made is a plot of 
the real part of the function T(s) of Eq. (26). In this synthesis, the econo- 
raiaation led to a very convenient form. It was found that the approximation 
to the real part could be made with a function having poles in the finite re- 
gion «nd vith all ths zeros inoved to infinity. This configuration of singulari- 
ties is advantageous since the resulting network can always be synthesized with 
a reactive ladder structure containing no coupled coils and terminated in a 
pure resistance. 

Consider Fig. 1. 

\ A AL 
JT/2. vvv 

/ <)// ~J/2. yzs. - ;/• _ Z 

o   o 

I 

FIGURE 1 

The short circuit transfer admittance is 

l12 
'12 

! 

722*1 

N 
mg • pn2 

(32) 

then, 

f12 

N/pn2 

rn^/png • l 

N 
pn2 

(33) 

I 

1 
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and, 
m- 

y22 "        is P^^^y reactive. (3U) 
pn2 

Now, the zeros of power transfer are also th« z*»ro« of T,2 sines » voltage 7 
at the input terminals 1, results in an input power of 

l7l2°in  "   K2I2  * <3*> 

when terminals 2 are shorted. Or, 

Qm - Ixi2'2 (36) 

If all the zeros of G.  are at infinity, then N is a constant. 

Darlington synthesis (Reference 13) leads to an expansion of 722 in 
a continued fraction such that the zeros of y\2  a*"6 all at infinity. The re- 
sult is the required network, within a multiplicative constant, in the form 
of a reactive four-pole terminated in a resistor. 

1 
The results of the approximation are shown in figs. MRI-13299 ar?d 

MRI-13300 for C- and I, respectively. It is noted that two terms of the partial 
fractions expansion (with the proper multiplicative constant) is a good ap- 
proximation to the required response. Removal of the zero, without perturba- 
tion of the poles results in a very large deviation of Qi in the region 2 
2.5><2<3*0' The final approximation with the analog computer generally gives $ 
better results than the partial fractions expansion in the given range and the 
resulting network contains fewer elements. The networks arising from the two 
approximations are given in Fig. MRI-13301, the equation of the analog approxi- 
mation being 

2 
v / x      s • .62s + 3.1U   /,«,\ Y (B) .  _ _  (37) 
*      .36Us-> • ,226s* • 3.U8s • 1.U5 

A comparison of the critical points in the two approximations is given in j 
Table 1. The response curves of log amplitude against log frequency, as seen ' 
on the cathode ray tube, are shown in Pig. MRI-13297. 

{ 

V 
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B..  Approximation for the Range "E56.0 

Having arrived at satisfactory results for the range '^'^3.0, the 
next step was an extended range $ the range of approximation was doubled. The 
addition of another term of the partial fractions expansion gave the starting 
point approximation function, 

I,(s) - -!—   • -*—£ 5 • -*—£2 ? (38) 
•* P  • S     S *{ 8 • «      •  •/» • U" 

Choosing a multiplicative constant of 1.31 so that the poles of the three 
terms of 13(3) give an equal ripple approximation to Re Y(s) for If £6.0, 
2q«  (38) becomes, 

T r«i     1.31 ($sk + U.U7s3 • 1U9.132 • 66.1s + 390) ,_<>, I ^s; - __ -> y *= 5  V3V; 
* s* • 1.3Ulsu • ltf^s'' • UU.2B* • 399s • 17U 

f   - .UU7 

The desired analog function is to approximate Re T(s) for T< 6.0 
in an equal ripple manner with all zeros in the real part plane located at 
infinity. The poles of Re 13(3) give the unperturbed location of the singu- 
larities. These are obtainable from the solutions of the equations 

J  • jX - 0 

n2 - X2 • j(X « 0                                                           (UO) 

kn2 » X2 • j/X - 0 

From which the poles in the first quadrant of X aret 

XL - M |_90^ 

-       X3.3.IU 1 U.08°                                                        (Ia) 

X^ - 6.28 I 2.0U° 

The results of the analog approximation are shown in Figs. MRI-13302 
and MRI°13303 for 0 and Y, respectively. Fig. MRI-13302 clearly shows that 
moving the zeros of the partial fractions approximation to infinity results in 

1 
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large deviations from the required response. Adjustments of pole positions, 
however, result in an analog approximation which is considerably better. Fig* 
MRI-I3303 gives the resultant plots of the amplitude of the admittance. Al- 
though the analog approximation deviates from the exact amplitude of the ad- 
mittance to a marked degree in the vicinity of the peak (afP - 3»lU), It is 
considerably better than the partial fractions expansion. Furthermore, an 
economization of two elements has been affected, and the analog network is of 
simpler configuration. The networks arising from the two approximations are 
given in Fig. MRI-1330U, the equation of the analog approximation being 

v , v    ak + .878s3 • 36s2 + 2U.7s + 76.U n,Px iiAs; -  5 r K n  \H*l 
a     .191s* • .167su + %.9hs* • 6.5Us* • 68.Us • 33.2 

It should be emphasized that the analog approximation is made to the real part, 
and the resultant approximation to the amplitude is computed by constructing 
the complete complex admittance according to References 9 and 13. 

A comparison of the critical points in the two approximations for 
the extended range is given in Table 2. It is to be observed that relatively 
small adjustments were required to obtain the improvements. The response 
curves of log amplitude against log frequency, as seen on the cathode ray 
tube, are shown in Fig. MRI-13298. 

HII. Conclusion 

An electrostatic analog computer, capable of approximating to the 
real or imaginary part as well as to the amplitude, has been successfully 
built. The machine gives results well within experimental accuracy and is a 
valuable laboratory tool. Although the method is one of trial-and-error, the 
amount of computational work, as compared to that normally encountered in the 
analytical approach to the approximation problem, is greatly reduce-. 

The perturbation technique, as well as the proper use of the log- 
arithmic transformation, simplifies the approach. The continuous scan feature 
of the analog makes it possible to immediately observe changes in the approxi- 
mation and solutions are obtainable in a very  short time. The approach from 
the real part leads to realizable driving-point functions, while economization 
reduces the number of elements. The experimental results show that relatively 
small adjustments in the positions of the critical points affected substantial 
improvements. It should be pointed out that the same approximations to the 
transmission line could have been gotten without a knowledge of the partial 
fractions approximating networks since the location of critical points are 
readily obtainable. 

« 
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